Referensi : wikipedia
An example is the bifurcation diagram of the logistic map:
x(n+1) = r*x(n)*(1-x(n))
The bifurcation parameter r is shown on the horizontal axis of the plot and the vertical axis shows the possible long-term population values of the logistic function.
The bifurcation diagram nicely shows the forking of the possible periods of stable orbits from 1 to 2 to 4 to 8 etc. Each of these bifurcation points is a period-doubling bifurcation. The ratio of the lengths of successive intervals between values of r for which bifurcation occursconverges to the first Feigenbaum constant.
Code matlab kita untuk logistic map sbb :
clc
clear all
r = 2.5:5e-4:4;
x = 0.4*ones(1,length(r));
k1 = 400;
k2 = 100;
f = zeros(k1+k2,length(r));
for i = 1:k1+k2
x = r .* x .* (1 - x);
f(i,:) = x;
end
f = f(k1+1:end,:);
figure(1)
plot(r,f,'b.','MarkerSize',1)
axis equal
xlabel('r','FontSize',16)
ylabel('x','FontSize',16);
Informasi sebelumnya mengenai chaotic map
Tidak ada komentar :
Posting Komentar